
Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1060

Dynamic Resource Allocation in Computing
Clouds through Distributed Multiple Criteria

Decision Analysis using PROMETHEE Method

Chandra Mouli Venkata Srinivas Akana
Associate Professor, Department of CSE, AMC Engineering College, Bangalore-83., India.

Email:mouliac@yahoo.co.in
Sundeep Kumar K.

Asst. Professor, Department of CSE, CMR Institute of Technology, Bangalore, India.
Dr. C.Divakar

Professor & Principal, Visakha Institute of Technology, Visakhapatnam, AP.,India
Dr. Ch. Satyanarayana

Associate Professor, Department of CSE, JNTUK, Kakinada.,AP., India.
--ABSTRACT---
In computing clouds, it is desirable to avoid wasting resources as a result of under-utilization and to avoid lengthy
response times as a result of over-utilization. In this technical report, we investigate a new approach for dynamic
autonomous resource management in computing clouds. The main contribution of this work is two-fold. First, we adopt a
distributed architecture where resource management has decomposed into independent tasks, each of which is performed
by Autonomous Node Agents that are tightly coupled with the physical machines in a data center. Second, the
Autonomous Node Agents carry out configurations in parallel through Multiple Criteria Decision Analysis using the
PROMETHEE method. Simulation results show that the proposed approach is promising in terms of scalability,
feasibility and flexibility.

Keywords :Cloud Computing, Distributed architecture, Grid computing, PROMETHEE method, Utility Computing.
--

Date of Submission : April 04, 2011 Date of Acceptance : May 28, 2011

1. INTRODUCTION

Cloud computing is a popular trend in current
computing which attempts to provide cheap and easy
access to computational resources. Compared to previous
paradigms, cloud computing focuses on treating
computational resources as measurable and billable
utilities. From the clients’ point of view, cloud computing
provides an abstraction of the underlying hardware
architecture. This abstraction saves them the costs of
design, setup and maintenance of a data center to host
their Application Environments (AE). Whereas for cloud
providers, the arrangement yields an opportunity to profit
by hosting many AEs. This economy of scale provides
benefits to both parties, but leaves the providers in a
position where they must have an efficient and cost
effective data center. Infrastructure as a Service (IaaS)
cloud computing focuses on providing a computing
infrastructure that leverages system virtualization [1] to
allow multiple Virtual Machines (VM) to be consolidated
on one Physical Machine (PM) where VMs often
represent components of AEs. VMs are loosely coupled
with the PM they are running on; as a result, not only can
a VM be started on any PM, but also, it can be migrated
to other PMs in the data center. Migrations can either be
accomplished by temporarily suspending the VM and
transferring it, or by means of a live migration in which

the VM is only stopped for a split second [2]. With the
current technologies, migrations can be performed on the
order of seconds to minutes depending on the size and
activity of the VM to be migrated and the network
bandwidth between the two. The ability to migrate VMs
makes it possible to dynamically adjust data center
utilization and tune the resources allocated to AEs.
Furthermore, these adjustments can be automated through
formally defined strategies in order to continuously
manage the resources in a data center with less human
intervention.

This task as the process of dynamic and
autonomous resource management in a data center. In
former research, this process is generally carried out
through a centralized architecture. The research focuses
on the use of utility functions to declare the preferences of
AEs over a range of resource levels in terms of utilities.
The utility values are then communicated to a global
arbiter that computes and performs the resource
management on behalf of the entire data center [3].

In this paper, we propose a new approach to the
same problem in the context of computing clouds. Our
contribution is two-fold. Firstly, we adopt a distributed
architecture where resource management is decomposed
into independent tasks and each task is performed by
Autonomous Node Agents (NA) that are tightly coupled
with the PMs in a data center. Secondly, NAs carry out
configurations through Multiple Criteria Decision

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1061

Analysis (MCDA) using the PROMETHEEmethod [4],
[5].

Figure 1. conceptual view of cloud computing.

2. PROBLEM DESCRIPTION

Resource consolidation in data centers can generally be
defined as the dynamic and autonomous process of
providing mappings between a set of application
environments and a pool of shared computational
resources. The process is dynamic since the resource
usages of the application environments are time variant
which stems from two major factors.

• First of all, the amount of computational
resources is variable throughout time due to the
possibility of addition, removal and temporary
unavailability of hardware/ software in a data
center (e.g. unexpected failures, scheduled
maintenance, etc.).

• Secondly, neither the number of application
environments nor their performance level and
resource level requirements at an arbitrary
instance can be statically determined.

Resource consolidation is also an autonomous
process in a sense that its goal is to minimize human
intervention during mapping/re-mapping in order to
provide a robust self-configuring infrastructure that is
more responsive to changing conditions.

The primary actors that benefit from resource
consolidation are clients and providers. Clients can simply
be defined as the owners of application environments that
execute within a data center. From the clients’ point of
view a data center is merely a pool of resources. One of
the expectations of clients is to have a level of abstraction
from the low-level operational details of the infrastructure
(e.g. servers, switches, topology, software deployment,
dynamic allocation of resources, etc.), through which they
will be able to define the desired performance— generally
referred to as quality of service or service level
agreements—of their application environments using high
level performance metrics. Based on these high level
definitions, clients assume that their application
environments are assigned sufficient amounts of
computational resources, so that; their performance level
requirements are continuously met regardless of the

changes in their workload. Moreover, it is also natural for
clients to claim a certain degree of control over the quality
of their application environments through modification of
the high-level performance parameters for various reasons
at any point in time (e.g. increasing/decreasing service
quality).

The former research in the field can be viewed
under the two groups:

(1) Resource consolidation in multiple-server
data centers, and

(2) Resource consolidation on a single-server
shared centers.

A two-layered architecture of a resource
consolidation system for non-virtualized data centers was
proposed in the work [3], which is used as a common
architecture in a majority of the later research. This
architecture consists of a local agent assigned to each
application environment, through which the required
amount of resources is computed. The information that is
generated by the local agents is then communicated to a
global arbiter which computes a near-optimal reallocation
of resources in the entire data center. This seminal work
also integrated this two-layered approach with the usage
of utility functions as a measure of desirability of
different amount of resources from the application
environments’ point of view, where the utility values
monotonically increase from undesirable amounts of
resources to the desirable amounts of resources, between
the values of 0 and 1. These utility values are then used to
calculate a maximum global utility by the global arbiter
under the condition of not exceeding the available
resources in a data center. This, in essence, forms the
optimization problem which is generally modeled as
Knapsack Problem where a global near-optimal
configuration is computed from the individual preferences
of local agents. This same approach which is then
merged with forecasting methods based on different
analytical models on non-virtualized data centers. While
this approach mainly focused on a queuing theoretic
approach to the performance modeling
problem, and considered a pure decomposition
reinforcement learning approach and their focus on
resource consolidation are revealed as:
 (1) A purely application environment centric view where
data center utilization is not of major concern,
 (2) The main goal being the computation of an optimal
configuration of resources in entire the data center, and
 (3) The absence of the cost of component movements in
the formulation of the problem.

Monitoring is simply the phase where
information regarding the resource utilization on each
computational unit and the resource usage of each
application environment in the data center is gathered.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1062

Figure 2. representation of a resource consolidator in
terms of the phases of monitor, detect and configure as an
observe-detect-react cycle.

A generally employed method is based on
periodically sampling data at the end of fixed time
intervals. The raw information on resource usage that is
collected by the monitoring mechanism is later processed
in the detection phase. In the detection phase, the main
concern is to capture any anomalies in terms of the
violations of performance aggreements, and if there is
any, to trigger the configuration phase. In the literature,
the detection phase is devised in the two different
manners of either treating it as a separate phase.

Fig. 2. The Representation of a Resource
Consolidator in terms of the phases of Monitor, Detect
and Configure as an Observe-Detect-React cycle. that is
entered periodically [3], or by merging it with monitoring
to trigger configuration on an event-driven basis where
events are often considered to be violations—or predicted
violations based on demand and load forecasting— of
performance agreements.
 Finally, configuration is the phase where the
consolidation reacts to the changes in the data center in
terms of re-allocating resources for application
environments that have undergone changes that have
critical affects on their performances. As a result,
application environments are re-assigned resources
wherever available in the data center, which in turn might
require movement of certain components of an
application environment between computational units.
The nature and effects of such movements are also have
attracted a certain amount of interest in the field. In the
literature, this configuration phase is generally considered
as a Multi-Dimensional Knapsack Problem or as a certain
variant of it— Vector Bin Packing Problem, which are
NP-Hard. [3].

3. CATEGORIZATION OF RELATED WORK ON
RESOURCE CONSOLIDATION IN MULTIPLE
SERVER DATA CENTERS- NON-VIRTUALIZED
VIRTUALIZED RESOURCE UTILIZATION
In this paper, we propose a new approach to the resource
allocation problem through an architecture that distributes
the responsibility of configuration among Node Agents

(NA). Each NA is a unit that is tightly coupled with a
single PM in the data center, which configures its
resources through MCDA only when imposed by the local
conditions. The distribution of responsibility makes our
approach inherently scalable. This limits the solution
space to the local views NAs, which results in fast and up-
to-date solutions regardless of the size of the data center.
Since our approach does not aim for a global
reconfiguration of the resources in the entire data center,
the number of migrations per configuration is
substantially less than the global solutions making our
approach more feasible given current technology. Finally,
NAs use the PROMETHEE method which gives us the
flexibility particularly in terms of adding new criteria to
the assessment of configurations along with the ability to
easily tune the weights of criteria.

4. SYSTEM ARCHITECTURE
We designed the system architecture based on the idea of
avoiding the problems of scalability that may emerge as a
result of determining and maintaining globally optimal
configurations through facilitating a centralized arbiter.
We strongly believe that as the data center expands both
the computation of optimal configurations and
centralizing these computations in a global arbiter might
impose serious complexities. As a result of this view, we
designed the system as a two-level architecture of
(1) Application agents that are closely coupled with
application environments that declare up-to-date resource
requirements, and
(2) node agents that are coupled with the computational
units in the data center that continuously distribute
resources based on the data that application agents
declared.

Each application environment in the system is
assigned an application agent upon arrival to the data
center. The main responsibility of the application agents
is to continuously provide the resource requirements that
match the performance requirements of the application
environments given certain initial performance
requirements. Most importantly, the result of these
mappings is subject to change as the workloads of
application environments vary. Therefore, an application
agent should closely monitor the workload of its
corresponding application environment and update the
resources necessary for it to meet the performance
requirements outlined upon arrival to the data center. We
also assume, in parallel with the related work, that each
application environment will have at least one component
during the course of its lifetime, where each component
performs a certain task within the objectives of a certain
application environments. In our work, each of these
components are assumed to be virtual machines to be
deployed on computational units. The results of these
mappings can be based both on the current workloads and
the anticipated future workloads, on a per component
basis.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1063

In the second layer of the architecture, however,
instead of using a global arbiter to determine the
configuration of resources, we assign this responsibility to
node agents that are attahed to each computational unit in
the data center. Each node agent has the responsibility of
monitoring the changes to the resource requirements as
declared by the application agents of the corrsponding
virtual components that are currently being hosted on the
computational unit that the node agent is attached to.
Moreover, node agent performs the necessary
configurations as the changes in resource requirements of
the components impose. These changes in our view are of
two natures:
(1) Local re-distribution of the resources as long as the
computational can accommodate, and
(2) Moving suitable components to other computational
units when the current components cannot be
accommodated with the resources.

 Figure 3. node program.

Fig.3. Node Program the hosting computational

unit. It is important to note here that the major focus of
this paper is based on the behavior of the node agents
during the course of configurations, rather than the
modeling of the performance and the mapping function of
application environments, for we think that the behaviour
of application agents should be investigated in a separate
work. Accordingly, in the rest of this paper, we outline
the abstract and mathematical model of the node agents.

In this context, we designed the system as a fully
distributed network of autonomous node agents each
capable of accommodating components—will be called
running tasks in the rest of this paper—and, when
necessary, delegating tasks to other nodes and handing
over the management to the corresponding node agents.
We assume that the network maintains a global awareness
of the resource availability of nodes and their task
assignments. In practice, this awareness can be achieved
either by using already established protocols or by having
nodes report to a centralized (or a hierarchy) of
monitoring units.

The process of dynamically allocating tasks to
nodes and maintaining resource distribution among tasks
to meet their resource requirements, is modeled as a
distributed process carried out by individual node agents
in the system. Conceptually, every node—in parallel to
running the tasks assigned to it— continuously performs a
cycle of four activities (see Figure 3): placement, where a
suitable node capable of running the given task is found
and the task is assigned to that node; monitoring where
the node monitors its tasks and resource requirements as
declared by application agents; tuning where the node

attempts to adjust its resource assignments locally in
respond to changes in task resource requirements and
determines if local accommodation is possible; task
selection where, if local accommodation is not possible, a
task is selected to be migrated to another node and the
process loops back into placement. We model every node
as a DASM agent that continuously runs its main
program. The following ASM program abstractly captures
the behavior of the node agents.1. However, in parallel to
the four main activities, every node also continuously
responds to communication messages it receives from
other
nodes.

Figure 4. task lifecycle.

Since the system is fully distributed, new tasks

can be assigned to any node in the system. Once entered
into the network, a task goes through a lifecycle starting
with being unassigned and ending with being terminated
which is when its execution is completed (see Figure 4).
For any given task at a given time, one node is
responsible to move the task through its lifecycle. The
current status of tasks are captured by the function
taskStatus : TASK -> TASK STATUS

A. Placement
The Placement activity consists of two tasks:

a) finding suitable nodes and allocating resources for
unassigned tasks, and
b) assigning allocated tasks to their corresponding nodes.

In the Placement activity, a node looks for the
tasks that are either unassigned or allocated. For these
tasks, the node is acting like a broker;

In ResourceAllocation, the node picks an
unassigned task from its task pool and tries to find a

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1064

suitable node with available resources that can perform
the task. At this level, we capture the computation of
finding such a node by the abstract function
placementNode : TASK - > NODE that given a task
suggests node that can run the task. We have,

Placement Node first filters out the nodes in the
data center that do not have the resources to host a certain
task t. After a list of the nodes that have the necessary
resources is provided, the problem is to choose the best
node defined on two criteria, resource utilization and rate
of change in resource usage. Resource utilization is the
criteria that ensures that maximization of resource
utilization is taken into account (lower the resources on a
node, higher the utilization will be), whereas rate of
change in resource usage reflects on the stability of
available resource usage on a node (low rate of change
points to less likeliness of further migrations, and thus
less likeliness of performance drops on the tasks). In order
to reflect on both the provider and clients these two
criterion can be weighted respectively.

When a node receives a resource lock request for
a given task, it checks whether it still has the required
resources available. If so, it puts a lock on the given
resources, sets a timer and sends an acknowledgement to
the requesting node; otherwise, it sends a lock rejection. If
it does not receive the task within a certain time window,
it removes the lock and releases the resources. Upon
receiving a lock acknowledgement, the node changes the
status of the task to assign and sends the task to the target
node. As part of the Communication activity, nodes
continuously monitor incoming network messages. If a
node receives a task-assignment message with a task that
it has alread allocated resources for, it will release the
lock, assigns the resources to the task, starts the task and
adds it to the set of its assigned tasks.

B. Monitoring And Tuning

Nodes continuously monitor their resource

utilization and their task requirements. There are three
main activities under monitoring and tuning: a) for all
running tasks, a node monitors
changes in its resource requirements and adjusts resource
allocations if needed; if such adjustment is not possible, a
task replacement may be triggered; b) a node also
monitors its resource utilization and adjust its resource
allocation to keep the utilization within a reasonable
boundary; c) finally, any resource lock that is timed out
(for which a task is not received) needs to be relased. The
following ASM rule abstractly captures these three
activities:

5. PROMETHEE METHOD:

The problem of the selection or the ranking of alternatives
submitted to a multicriteria evaluation is not an easy
problem. Neither economically nor mathematically
usually there is no optimal solution; no alternative is the
best one on each criterion. A better quality implies a
higher price. The criteria are conflicting. Compromise
solutions have to be considered. It starts with general
comments on multi-criteria problems.

Max{g1(a),g2(a),gj(a),….,gk(a)a∈∈∈∈ A}
where a1 , a2 , … ai ,… an are n potential alternatives
and f1 , f2 , … fj, … fk are k evaluation criteria. Each
evaluation fj(ai) must be a real number. Such a matrix can
model many real-world applications. In some cases it is
an easy task and the matrix is obtained immediately. In
other cases it can be a hard problem implying several
months of severe consultancy and analysis work, as for

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1065

instance when a new production unit must be selected
among several possible sites.

6. CONFIGURATION MODEL BASED ON A
FORMAL DECISION MAKING METHOD:

I focus on the problem of configuration in terms of
moving components of application environments between
computational units. This is an action that is performed
only when a node agent determines that it is no longer
possible to accommodate all of the components that it is
currently hosting. Then the problem was defined in an
abstract manner in two basic operations:
• Deciding on one or more suitable task(s) remove, and
• Deciding where in the data center to move them to.

The main goal of the first decision—task

selection—can be given as the necessity to bring the
resource usage on the computational unit within the limits
of available resources. However, the choice is not only
dependent on these single criteria. It also needs to take
into account minimizing the cost of removal and
minimizing the probability of further movements of that
task from its new host. In this sense, the problem of
choice becomes of multiple criteria nature. Then the task
selection can be modeled as a multi-criteria decision
making problem, where the decision maker is the node
agent that detects the need for removal of component(s),
and the criteria being maximizing the resource utilization
on the computing unit, minimizing the time and the
negative effects of the removal, and minimizing the
probability of re-removal of the component from its new
host. The alternatives can be outlined as the components
that can bring the resource usage under acceptable limits
(e.g. limits of the host). Furthermore, the decision method
to be facilitated should provide means to remove multiple
components when necessary without extra the
computational burden of re-calculating a best choice.

The main goal of the second decision—node
selection— can be given as determining a node that can
accommodate the component chosen in the first decision.
This, in the first place depends on the amount of resources
that a node can provide for the component. Thus the
candidate set is defined as the nodes in the data center that
can accommodate the chosen components. The resources
should be the minimal—but still within limits of
resources—on the chosen candidate in order to ensure that
the overall utilization will not be low. However, as in the
first case it is necessary to define a more comprehensive
set of factors that affect this process. The most visible
criteria other than the resources in that sense are
probability of accommodating the chosen component
without the need for further removals from the node, and
minimizing the effects of the movement on the currently
hosted components. Then these two steps can be
considered as multi criteria decision problem as given in:

Max{g1(a),g2(a),gj(a),….,gk(a)a∈∈∈∈ A}
where A is a finite set of possible candidates.
(a1,a2,………,an) and {g1(.),g2(.),….,gj(.)……, gk(.)} a set
of evaluation criteria.

 In our case some of the criteria will be
maximized while some of them will be minimized based
on the step of decision. Then, the decision maker expects
to identify a candidate that optimizes all the criteria. In
order to deal with this problem, we use the PROMETHEE
preference modeling, a specific family of outranking
methods. PROMETHEE methods were designed to treat
multicriteria problems of type 1 and their associated
evaluation table.

The information requested to run PROMETHEE
consists of:

1. Information between criteria, and
2. Information within each criteria.

1. Information between criteria: relates to the weights

of each criteria in the decision problem as a measure
of their relative importance. These weights {wj,
j=1,2,….,k} are nonnegative numbers, independent
from measurement units of the criteria. The higher
weight that the more important the criterion during
course of decision-making. In general, there is no
objection to using normalized weights: ΣΣΣΣk

j=1
 wj=1.

Assigning weights to the criteria in our design is the
responsibility of the providers in a sense that these
weights represent the providers’ preferences as to
how the resources should be consolidated (e.g. taking
maximizing resource utilization, minimizing
agreement violation, or a balance between them as
the ultimate goal).

2. Information within criteria: relates to the
comparison of based on how good an alternative with
respect to the others based on a per criteria basis. In
contrast with Utility Functions, PROMETHEE does
not allocate an intrinsic utility to each alternative,
neither globally, nor on each criterion. Instead, the
preference structure is based on pair wise
comparisons. In this case the deviation between the
evaluations of alternatives on a particular criterion is
considered. These preferences can be considered as
real numbers varying between 0 and 1. Then the node
agent—the decision maker in general—facilitates a
function for each criterion:

: Pj(a,b)=Fj[dj(a,b)]∀∀∀∀ a,b∈∈∈∈ A ---- (1)
Where, Dj(a,b)=gj(a)-gj(b)

And for which
0<=pj(a,b)<=1

In case of a criterion to be maximized, this
function provides the preference of a over b for observed
deviations between their evaluations on criterion gj(.). For
criteria to be minimized, the preference function should
be reversed or alternatively given by:

: Pj(a,b)=Fj-dj(a,b)∀∀∀∀ a,b∈∈∈∈ A ---(2)

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1066

The pair {gj(.),Pj(a; b)g is called the generalized
criterion associated to criterion gj(.). Such a generalized
criterion has to be defined for each criterion. In order to
facilitate this identification, six types of particular
preference functions have been proposed:

• Usual Criterion,
• U-Shape Criterion,
• V-Shape Criterion,
• Level Criterion,
• V-Shape with Indifference Criterion, and
• Gaussian Criterion.

Let us define the Aggregated Indices and the
Outranking Flows as defined in PROMETHEE. For
aggregated indices, Let a,b∈ A

: ΠΠΠΠ(a,b)= ΣΣΣΣk
j=1 pj(a,b)wj --- (3)

: ΠΠΠΠ(a,b)= ΣΣΣΣk
j=1 pj(b,a)wj --- (4)

ΠΠΠΠ(a,b) is expressing with what degree a is
preferred to b over all the criteria and Πb; a with what
degree b is preferred to a. In most cases there are criteria
for which a is better than b, and criteria for which b is
better than a, consequently Π (a, b) and Π (b,a) are
usually positive. The following properties hold

for all(a,b)∈∈∈∈ A
ΠΠΠΠ(a,a)=0

0<=ΠΠΠΠ(a,b)<=1
0<=ΠΠΠΠ(b,a)<=1,0 <=ΠΠΠΠ(a,b)+ ΠΠΠΠ(b,a)<=1

ΠΠΠΠ(a,b) 0 implies a weak global preference of a over b;
ΠΠΠΠ(a,b) 1 implies a strong global preference of a over b;

The outranking flows can be defined as follows.
Each alternative a in A face (n -1) other alternatives in A.
The, let us define the outranking flows as positive and
negative outranking flows, where positive outranking
flow of a:

: φφφφ+(a)=1/n-1∑∑∑∑x∈∈∈∈ A(ΠΠΠΠ(a,x))) --- (5)

: φφφφ-(a)=1/n-1∑∑∑∑x∈∈∈∈ A(ΠΠΠΠ(x,a))) --- (6)

The positive outranking flow represents how an
alternative is outranking all the others, meaning its power
or outranking character. Thus, the higher φ+(a), the better
the alternative. the lower φ+(a) better alternative.

7. EXPERIMENTAL SETUP

We have built a simulation environment using the C
programming language in order to test our approach and
compare it to certain other strategies. The environment
simulates the changes and configuration actions in a
datacenter in a stepwise manner, where between each step
there is a fixed time interval. We have chosen this view in
order to be able to compare each strategy to be tested on
the simulation environment at any instance of the
simulation with identical conditions.

Accordingly, every virtual component declare new
resource usages at each step and the strategy that is being
used to configure the data center reacts with respect to the
new conditions. We define the resource dimensions as
CPU usage, memory usage and bandwidth usage.

Layer one consists of modules that represent the
virtual components and physical machines. Each virtual
component in the simulation environment represents a
task that is independent of the others, and each of those
tasks are responsible to update their resource
requirements at each step. Virtual components in our
simulation environment are considered in two groups:
batch and online processes. Virtual components of batch
type update their resource requirements as random noise
signals based on certain distributions (e.g. uniform,
poisson, exponential, normal, pareto, etc.). Each virtual
component update their resource requirements
independently on each resource dimension where each
dimension may have different distributions. Note that an
application environment can be represented by a number
of virtual components, and in this case an application
environment that represents a batch process is assumed to
be represented by one or more of batch-type virtual
components. The online type virtual components work in
on and off periods. The on periods represent the times
when there are requests to be serviced, and the off periods
represent idle intervals. During their on periods online
virtual components generate resource requirements in a
way that is identical to the batch tasks, while during the
off periods they do not pose any recource requirements.
The distribution of the length of on and periods are
modeled to reflect the selfsimilar behaviour seen in online
environments, that is, if one of the periods’ duration is
exponentially (or poisson) distributed the other has a
heavy-tailed distribution (e.g. pareto). In the simulation
environment each virtual component has a certain life
time determined when they arrive. Life time of a virtual
component is defined either in terms of a certain number
of steps or as unlimited which means that it will reside in
the data center forever. The physical machines represent
bins that can acommodate one or more virtual
components.

In the simulation environment it is assumed that
a virtual component cannot span multiple physical
machines. Each physical machine keeps a record of the
virtual components it hosts and the amount of resources in
use by its virtual components. In addition, physical
machines have an upper bound for resource usages to
ensure that they do not have more virtual machines than
they can acommodate and response times are kept at
reasonable levels. Finally, they are capable of migrating
their virtual components to other physical machines when
necessary. Layer two consists of a single module, the
global monitor. The global monitor keeps a record of each
virtual component and each physical machine in the
system. While the virtual components are recorded only
as allocated or not allocated without the details of their
resource usages, physical machines in the system are
recorded with respect to their available resources in each

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1067

dimension. The second responsibility of this module is to
reply to the queries about the states of the physical
machines in the data center. Some of the typical queries
that are replied to by the global monitor are the first
physical machine with the necessary resources, non-
empty physical machine(s) that have a certain level of
available resources on each dimension, empty physical
machines, etc.

Layer three consists of the strategy modules that
represent different configuration methods that are used to
consolidate resources. Every strategy module has to
assign arriving virtual components to physical machines
and re-configure the data center in terms of facilitating
necessary movements to keep each virtual component
below their upper bounds. The assignments and re-
configuration is performed at each step during the
simulation. We have implemented four strategy modules
with two of them represent a centralized control that aims
for a global near-optimal configuration, while the other
two represent distributed control with local configuration.
By local configuration we mean that the nodes are not
concerned with the global consolidation but are focused
on holding their resource usages below their resource
upper bounds. The two methods we implemented to
represent the centralized control and global configuration
strategy are the wellknown bin packing First Fit (FF) and
First Fit Decreasing (FFD) methods. FF performs
configuration at each step by iterating through the list of
virtual components that are present in the data center—
either allocated or not allocated—and placing each of
them on the first physical machine that can accommodate.
FFD performs the exact same operation at each step with
the difference of first sorting the list of virtual
components in a decreasing order, that is, the virtual
components that have the greater resource requirements
get placed first.
Implementation Requirement

Software Requirement:

• The language chosen for this project is Java
swing and softwareused in NetBeans 6.8.

• Operating System: Microsoft windowsXP.
i. Selection of the Platform:

 Windows XP provides the most dependable
version of windows ever-with the best security and
privacy features Windows has ever provided.
Overall,Security is improved Windows XP is available in
two editors-Windows XP Home Edition for Home Use
and Windows XP professional for business of all sizes.
Security features in Windows XP Home Edition make it
even safer for you to stop and browser on the Internet.
Particularly if you use always-on connection such as cable
modem and DSL. Window XP Professional includes all
of the security capabilities of Windows XP Home Edition,
plus other security management features. These important
new security features will reduce your IT costs and
enhance the security of your business systems. Windows
XP Home Edition Security service have been ddesigned

to be flexible, and take into account a wide varity if
dcurity and privacy

We model every node as a DASM agent that
continuously runs its main program. The following ASM
program abstractly captures the behavior of the node
agents. However, in parallel to the four main activities,
every node also continuously responds to communication
messages it receives from other nodes. Since the system is
fully distributed, new tasks can be assigned to any node in
the system. Once entered into the network, a task goes
through a lifecycle starting with being unassigned and
ending with being terminated which is when its execution
is completed.

In our approach also, the physical machines are
responsible for local configurations. We adapted
PROMETHEE II as a decision making procedure for
determining the configurations.
The configuration is performed only in two cases:
 (1) Resource upper bound is reached, and
(2) Resource lower bound is reached.

 When the upper bound is reached a physical
agent tries to move the most suitable virtual component(s)
in order to bring the resource usage below the upper
bound again.

This is performed using PROMETHEE II as
follows. First, the physical machine agent filters a list of
virtual components that can bring the resource usages
below the upper bound, if this list is non-empty, then it
performs the pairwise comparisons in order to sort the
alternatives based on their net outranking flows. During
these pairwise comparisons, the criteria are resource
usages in each dimension and resource usage variabilities
in each dimension. The variabilities are determined based
on a certain set of most recent data on resource usages.
The weight of these criteria is left to the providers
preference based on their goals. If the list is empty, then
the physical machine agent uses all of the virtual
components for the pairwise comparisons and the sorting
of the net outranking flows of each alternative. Once the
most suitable virtual component is picked, the physical
machine agent contacts the global monitor in order to
retreive a set of nodes that can acommodate the chosen
virtual component. Using the same criteria, the most
suitable one is picked from the set of alternative physical
machines.

Finally, the machine with resources above the upper
bound moves the chosen virtual component to the chosen
physical machine. In the case where there is no physical
machine that can acommodate the virtual component in
the data center, the cycle is repeated for the second best
virtual component. If none of the virtual components can
be replaced within the data center, a new node is created
for the most suitable virtual component. In the case where
a physical machines resource usages are below a lower
bound, the physical machine agent—as in the simple
method—tries to remove its virtual components and turn
itself off. During this process, the virtual machines are not

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1068

picked based on any criteria, however for the choice of
destination the pairwise comparisons are again used.

8. RESULTS AND VALIDATION

The test scenarios based on the number of virtual
components to be hosted on a data center and the
necessary size of the data center in terms of the physical
machines to be used. In that sense, we focus on three
distinct data centers with a certain number of virtual
components:

• Extra Small scenario represents a data center with
600 physical machines and 5000 virtual
components to be hosted, Small scenario represents
a data center with 1300 physical machines and
10000 virtual components, and Medium scenario
represents a data center with 2500 physical
machines and 20000 virtual components.

Figure 5. the number of physical machines per algorithm

Fig.5. shows represent the number of physical
machines per algorithm that are in use at each step. The
bottom figure represents the number of migrations per
algorithm that are performed to configure the data center.

Figure represents the number of physical
machines per algorithm that are in use at each step. The
bottom figure represents the number of migrations per
algorithm that are performed to configure the data center.
(Number of virtual components, resource requirements
per virtual components).note that each scenario starts with
0 virtual components at iteration 0 and iteration by
iteration reaches the specified final number of virtual
components, and the physical machines are not utilized
unto 100%, instead we set the upper bounds per each
method to 60% for feasible response times. When a
virtual component with finite lifetime departs from the
data center, it is replaced by a fresh virtual component
arrival. We have chosen such an implementation to be
able to evaluate the methods under a state that can be
called steady in terms of the number of virtual
components.

Figure 6. the number of physical machines per algorithm

Fig.6 shows represent the number of physical
machines per algorithm that are in use at each step. The
bottom figure represents the number of migrations per
algorithm that are performed to configure the data center.

It can clearly be seen in these figures that the centralized
control methods (FF and FFD) need a number of physical
machines substantially less than the distributed (simple
method and our approach) approaches. This means that
the configuration in the centralized cases result in higher
utilization of the data center. However, it is also Cleary
seen in the migration measures that the centralized
methods are performing an unreasonable number of
migrations to reach that utilization level. In the distributed
cases, however, the number of migrations that are
performed for configuration is much lower with a
tradeoff.

Fig.7. shows represent the number of physical
machines per algorithm that are in use at each step. The
bottom figure represents the number of migrations per
algorithm that are performed to configure the data center.

Figure 7. the number of physical machines per algorithm

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1060-1069 (2011)

1069

9. CONCLUSION AND FUTURE WORK
In this paper, we introduced a new approach for dynamic
autonomous resource management in computing clouds.

Our approach consists of a distributed
architecture of NAs that perform resource configurations
using MCDA with the PROMETHEE method. The
simulation results show that this approach is promising
particularly with respect to scalability, feasibility and
flexibility. Scalability is achieved through a distributed
approach that reduces the computational complexity of
computing new configurations. Simulation results show
that our approach is potentially more feasible in large data
centers compared to centralized approaches. In essence,
this feasibility is due to the significantly lower number of
migrations that are performed in order to apply new
configurations. Simulation results show that: View of
overall CPU utilizations of the data center per physical
machine when First Fit method is used. View of overall
CPU utilizations of the data center per physical machine
when First Fit Decreasing method is used. View of overall
CPU utilizations of the data center per physical machine
when the simple distributed method is used. View of
overall CPU utilizations of the data center per physical
machine when our distributed method is used.

FUTURE WORK:
In the next stages of this work, our goal is to include new
criteria—such as VM activity—to reflect on the overhead
of migrations more precisely. We are going to explore
further refinements to our use of the PROMETHEE
method by incorporating generalized criteria other than
the Usual Criterion. In addition, we plan to compare the
use of PROMETHEE to other MCDA methods. Finally,
we are working on the design and implementation of new
modules that will enhance the simulation environment
with respect to the measurement of SLA violations.

REFERENCES
[1] Gerald J. Popek, Formal Requirements for

Virtualizable Third Generation Architectures
(Infocom)

[2] William E. Walsh, Gerald Tesauro and Jeffrey O.
Kephart, Utility Functions in Autonomic Systems
(Hawthorne, NY 10532, 19 Skyline Drive)

[3] Mohamed N. Bennani and Daniel A. Menasc´e,
Resource Allocation for Autonomic Data Centers
using Analytic Performance Models (George Mason
University 4400 University, Infocom)

[4] Mohamed N. Bennani and Daniel A. Menasc´e,
Resource Allocation for Autonomic Data Centers
using Analytic Performance Models (George Mason
University 4400 University, Infocom)

[5] Laura Grit, David Irwin and Aydan Yumerefendi,
Virtual Machine Hosting for Networked Clusters:
Building the Foundations for Autonomic
Orchestration (Infocom)

[6] Zhikui Wang, Yuan Chen, Daniel Gmach, Sharad
Singhal and Brian J. Watson, Appraise: Application-
Level Performance Management in Virtualized
Server Environments (Infocom)

[7] Bo Peng, Bin Cui and Xiaoming Li, Implementation
Issues of a Cloud Computing Platform (Infocom).

Authors Biography

Chandra Mouli Venkata Srinivas Akana
received his Masters Degree in Computer
Science & Engineering from Guru
Jambheshwar University of Science &
Technology, Hisar, Haryana, India. He is

currently working as a Associate Professor in
the Department of Computer Science & Engineering,
AMC Engineering College, Bangalore, Karnataka, India.
His current research is focused on Software Engineering,
Ad-hoc Networks, Network Computing & Security, Data
mining & Warehousing and Database Management
System. He has published several papers in National &
International Journals. He has guided to more than 70
academic projects at Postgraduate & under Graduate level.
He is a member of the IEEE, CSI & ISTE.

K Sundeep Kumar received the M.Tech (IT)
from Punjabi University in 2004, and ME
(CSE) from Anna University in 2009. He is
working as Asst. Professor in the
Department of Computer Science &

Engineering, CMR Institute of Technology, Banglaore.
He presented more than 10 papers in International and
national Conferences. His research interests include
OOAD, Software Engineering and Data Warehousing. He
is a member in ISTE.

Dr. Divakar C. received his Masters
Degree as well as Doctorate in Computer
Science & Engineering from Andhra
University, Visakhaptnam, and Andhra
Pradesh, India. He is currently working as

Professor & Principal for Visakha Institute of
Technology, Visakhapatnam, Andhra Pradesh, India. He
is guiding six Ph.D. research Scholars. His current
research is focused on Bio-informatics, Software
Engineering, Ad-hoc Networks, Network Computing,
Image Processing & Database Management System. He
has published several papers in National & International
Journals. He has guided several academic projects at
Postgraduate & under Graduate level.

Dr. Ch.Satyanarayana received his Masters
Degree as well as Doctorate in Computer
Science & Engineering. He is currently
working as Associate Professor in the
Department of Computer Science &
Engineering and Controller of Examinations

of JNTUK, Kakinada, Andhra Pradesh, India. He is
guiding Five Ph.D. research Scholars. His current
research is focused on Software Engineering, Ad-hoc
Networks, Network Computing, Image Processing, Data
Mining & Database Management System. He has
published several papers in National & International
Journals. He has guided several academic projects at
Postgraduate & under Graduate level.

